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Abstract

We have searched for chargino-neutralino production (~��1 ~�
0
2) in 1.8 TeV

p�p collisions, followed by their leptonic decays ~��1!~�01`
�� and ~�02!~�01`

+`�.

These trilepton events are expected within a framework of the Minimal Su-

persymmetric Standard Model (MSSM). In a 19.1 pb�1 data sample collected

with the Collider Detector at Fermilab, no trilepton events were observed.

Upper limits on �(p�p!~��1 ~�
0
2) � BR(~�

�

1 ~�
0
2!3` + X) were obtained for vari-

ous MSSM parameter space regions, yielding new 95% con�dence level lower

limits for the neutralino (~�02) mass which extended as high as 49 GeV/c2.

PACS numbers: 11.30.Pb, 12.60.Jv, 13.85.Rm, 14.80.Ly

Typeset using REVTEX
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Although the Standard Model (SM) provides remarkable agreement with current high

energy physics data, it fails to provide insight into several important issues. Among these

are the apparently arbitrary energy scale of electroweak symmetry breaking, the appearance

of divergences in the Higgs boson self-energy [1], and the failure of coupling constants to

unify at large energy scales [2]. A simple extension to the SM to solve these di�culties is

the Minimal Supersymmetric Standard Model (MSSM) [3].

In the MSSM, there are two charged and four neutral supersymmetric (SUSY) partners

(~�'s) of electroweak gauge bosons and Higgs bosons. In p�p collisions the lightest chargino

(~��1 ) and the second lightest neutralino (~�02) are pair-produced along with their subsequent

leptonic decays ~��1!~�01`
�� and ~�02!~�01`

+`�, in which ~�01 is the lightest neutralino (lightest

supersymmetric particle or LSP) and is stable. We expect an appreciable rate of the cross

section times branching ratio (� � BR) for the resulting trilepton �nal state in the MSSM

with the Grand Uni�ed Theory (GUT) hypothesis provided by Supergravity [4] and slep-

ton/sneutrino mass constraints [5]. The trilepton �nal state has small SM backgrounds,

making it an excellent discovery signature at hadron colliders [6].

We present results of the search for ~��1 ~�
0
2!`�`+`� + X events (` = e or �) using 19.1

pb�1 of data from p�p collisions at a center of mass energy of
p
s = 1.8 TeV. The data sample

was collected at the Collider Detector at Fermilab (CDF) during the 1992-93 run of the

Fermilab Tevatron. The CDF detector is described in detail elsewhere [7]. The portions

of the detector relevant to this analysis will be described briey here. The location of the

p�p collision event vertex (zvertex) is measured along the beam direction with a time projection

chamber (VTX). The transverse momenta (PT ) of charged particles are measured in the

pseudorapidity region j�j < 1.1 by the central tracking chamber (CTC), which is situated

in a 1.4 T solenoidal magnet �eld. Here PT = P sin �, � = � ln tan(�=2), and � is the polar

angle with respect to the proton beam direction. The electromagnetic (EM) and hadronic

(HA) calorimeters are located outside the tracking chambers, segmented in a projective

tower geometry, and covering the central (CEM, CHA; j�j < 1:1) and plug (PEM, PHA;

1:1 < j�j < 2:4) regions. Muon identi�cation is available in the central muon (CMU, CMP;

6



j�j < 0:6) and muon extension (CMX, 0:6 < j�j < 1:1) detectors.

The trilepton candidates are selected from an initial sample of 6:3 � 106 events that

have �red the inclusive central electron or muon triggers with PT > 9.2 GeV/c. We require

the events to contain at least one lepton candidate passing strict lepton identi�cation re-

quirements and at least two additional lepton candidates with less stringent requirements.

A strict electron candidate must deposit at least 11 GeV transverse energy (ET ) in the

CEM, exhibit lateral and longitudinal shower pro�les consistent with an electron, and be

well matched to a charged track [8] with PT � ET/2. A strict muon candidate must produce

a track segment in the CMU and/or CMP chambers, be well matched to a charged track

with PT � 11 GeV/c, and deposit calorimeter energy consistent with a minimum ionizing

(MI) particle. Loose electron selections accept CEM or PEM energy clusters, whose shower

pro�les are consistent with an electron, with ET � 5 GeV. The CEM electron is required to

be well matched to a charged track [8] with PT � ET/2, while the PEM electron must be

correlated with a high occupancy of hits in the VTX. Loose muon selections identify track

segments in the CMU, CMP or CMX with PT � 4 GeV/c. In addition, a charged track with

PT � 10 GeV/c outside the central chamber coverage [7] is considered a central MI (CMI)

muon if it deposits energy in the central calorimeters consistent with an MI particle.

We further require: (a) each lepton to pass a lepton isolation (ISO) cut in which the

total calorimeter ET in an �-� cone of radius R �
q
(��)2 + (��)2 = 0.4 around the lepton,

excluding the lepton ET , must be less than 2 GeV; (b) jzvertexj � 60 cm; (c) the �-� distance

(�R``) between any two leptons to be greater than 0.4; (d) the di�erence in azimuthal angle

(��`1`2) between the two highest PT leptons in the event to be less than 170�; (e) at least

one e+e� or �+�� pair; (f) removal of events containing an `+`� pair with invariant mass in

the regions 2.9-3.3 GeV/c2 (J= ), 9-11 GeV/c2 (�) and 75-105 GeV/c2 (Z0). After imposing

these criteria, we are left with zero SUSY trilepton candidate events (see Table I).

We use the ISAJET Monte Carlo program [9] and a CDF detector simulation program

to determine the total trilepton acceptance (�tot), which consists of geometric and kinematic

acceptance, trigger e�ciency, isolation e�ciency, and lepton identi�cation (ID) e�ciency.
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The trigger e�ciency curves for single e's and �'s are obtained from data samples which

are not biased by the inclusive lepton triggers. These curves reach a plateau above 11

GeV/c at (84.3�1.5)% for e's and (88.6�0.7)% for �'s. The isolation e�ciencies for e and

� are determined from the second leptons in Z0!`+`� events (whose underlying event

activity should be similar to that in SUSY events) where no isolation cut is imposed on

the second lepton. The isolation e�ciencies are (95�1)% for central leptons and (80�3)%
for plug electrons. Lepton ID e�ciencies are also determined from the second leptons in

Z0!`+`� and J= !`+`� events where no ID criteria are imposed on the second lepton.

The values obtained from Z0 and J= events agree well, indicating that the ID e�ciencies

are independent of the lepton PT . The resulting lepton ID e�ciencies are listed in Table II.

The SM backgrounds can be divided into two classes: (i) direct trilepton events (W�Z0,

Z0Z0, t�t, b�b and c�c production) and (ii) dilepton (Drell-Yan, Z0, and W+W�) plus fake

lepton events. The additional fake lepton is an object identi�ed as a lepton, which does not

come from the main physics process. Each of these backgrounds is estimated using ISAJET

and the CDF detector simulation program.

In the �rst category of backgrounds, the production cross sections for W�Z0, Z0Z0 and

t�t are taken to be 2.5 pb [10], 1.0 pb [10] and 7 pb (top quark mass of 170 GeV/c2) [11],

respectively. It should be noted that the ISO distributions for b and c decay leptons in

ISAJET agree well with those from the CLEOQQ program (optimized for heavy avor

decays) [12]. The total expected background from these processes is 1.15�0.65 events, arising
entirely from b�b and c�c production, with negligible contributions from W�Z0, Z0Z0 or t�t.

Since the primary mechanism of Drell-Yan, Z0 and W+W� productions is the Drell-

Yan process, an accurate fake rate (e:g., misidenti�ed pions, photon conversions, decays in

ight, b=c semileptonic decay leptons from initial state radiation, etc.) can be estimated by

analysing well-identi�edW�!`�� events (without any restriction on jets): (0.273�0.036)%
fake leptons per event. The fake rate is then applied to the estimated rates of Drell-Yan,

Z0 and W+W� productions. We use the Drell-Yan and Z0 production cross sections mea-

sured by CDF [13,14], while the W+W� production cross section is taken as 9.5 pb [10].
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We estimate these background yields to be 0.58�0.13 Drell-Yan events, 0.14�0.03 Z0 events

and negligible contribution from the W+W� process.

The total of all expected backgrounds is thus 1.9�0.7 events. This is consistent with our

observation of zero events.

There are four primary sources of systematic uncertainty in the � � BR measurement:

trigger e�ciency; trilepton-�nding e�ciency; structure functions; and total integrated lumi-

nosity. The single muon trigger e�ciency has the largest uncertainty (�2:7%), which we

conservatively use for all events. The combined systematic uncertainty of all trilepton-�nding

e�ciencies (kinematic, geometric, reconstruction, identi�cation, and isolation) is �12:9%,
mainly from the geometric and kinematic uncertainties in the detector simulation program.

The trilepton acceptance was studied with the CTEQ 2L structure function [15] as the nomi-

nal choice and various other structure functions [16]. We take the maximum deviations from

the CTEQ 2L predictions as our systematic uncertainty: +8:2
�1:8%. The systematic uncertainty

of the total integrated luminosity is �3:6%. Combining these four uncertainties gives a total
systematic uncertainty in � �BR of +15:6

�14:4%.

Based on an observation of zero trilepton events, we set a 95% con�dence level (C.L.)

upper limit of 3.1 events on the mean number of events expected. This result is obtained

by convolving the total systematic uncertainty of �15.6% (as a Gaussian smearing) with a

Poisson distribution. Given the ISAJET prediction on � �BR we exclude a particular MSSM

parameter space if:

� �BR(~��1 ~�02 ! 3` +X) >
3:1

�tot � R Ldt : (1)

The value of �tot ranges from �1% to 7% in the parameter region described below, and is

approximately linearly dependent on the ~��1 mass (40-70 GeV/c2).

Assuming relations of the slepton and sneutrino masses to the gluino and squark

masses [5], the MSSM predictions from ISAJET depend on the ratio of Higgs vacuum ex-

pectation values tan�, the Higgs mixing parameter �, the gluino mass M(~g), the squark-

to-gluino mass ratio M(~q)=M(~g), the pseudoscalar Higgs mass M(HA) and the trilinear
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top-squark (~t) coupling At. The last two parameters are �xed (M(HA) = 500 GeV/c2, At

= 0), since they do not signi�cantly alter the trilepton yield. Generally, allowed values of

tan� are in the range 1 to �60. Values close to 1 are theoretically disallowed (the lightest ~t1

becomes the LSP). For tan� >� 10, the bottom-squark (~b1) and tau-slepton (~�1) can become

light, due to mixing in these sectors. Consequently, the branching ratios for ~��1!~�1�� and

~�0
2
!~�1� increase. Thus, the sensitivity of the search is somewhat degraded for tan � values

above 10. Our trilepton sensitivity is lost for j�j < 100 GeV (where the leptonic branching

ratios of the chargino and neutralino decrease signi�cantly), and j�j is favored to be <�1000
GeV (the approximate energy scale below which SUSY phenomena should be observable).

Finally, the M(~q)=M(~g) ratio is theoretically favored to be greater than unity [5] and the

trilepton yield drops rapidly when this ratio exceeds 2 (this is due to sleptons becoming

heavy, which reduces the neutralino leptonic branching ratio). Thus, we have scanned the

following ranges of MSSM parameters: tan� = 2, 4, 10; 200 GeV < j�j < 1000 GeV; M(~g)

= 120�250 GeV/c2; M(~q)=M(~g) = 1.0, 1.2, 2.0.

This analysis is insensitive to ~��1 masses above the current value (47 GeV/c2 [17]) for any

choice of MSSM parameters. However, Figure 1 shows several parameter space regions for

which this analysis increases the existing ~�02 mass limit [17], reaching as high as 49 GeV/c
2 at

tan� = 2. With Equation 1, we also provide the 95% C.L. upper limits on � � BR (single

trilepton mode). At a particular choice of the MSSM parameters (tan � = 2, M(~q)=M(~g) =

1.2, � = �400 GeV), it is determined to be 1.4 pb, 0.6 pb and 0.4 pb for ~��1 masses of 45,

70 and 100 GeV/c2, respectively.

In conclusion, we �nd no events consistent with ~��1 ~�
0
2 pair production in 1.8 TeV

p�p collisions and set lower limits on the ~��1 and ~�02 masses. The resulting ~��1 mass lim-

its are less than or equal to existing bounds. However, the ~�02 mass lower limits obtained

are as high as 49 GeV/c2 in particular regions of the MSSM parameter space, improving

previous bounds [17].
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TABLES

TABLE I. Cumulative number of events left after each cut in the trilepton analysis, listed

separately for the electron and muon trigger samples. The original CDF data sample corresponds

to
R
Ldt = 19:1� 0:7 pb�1.

Cut e triggers � triggers

Original sample 3; 677; 903 2; 707; 852

Dilepton events 5; 472 6; 606

Trilepton events 94 136

ISO < 2 GeV 5 21

jzvertexj < 60 cm 5 21

�R`` > 0:4 3 2

��`1`2 < 170� 2 2

Require e+e� or �+�� 2 2

Z0 removal (75-105 GeV/c2) 0 1

J= removal (2.9-3.3 GeV/c2) 0 1

� removal (9-11 GeV/c2) 0 0

TABLE II. Lepton ID e�ciencies (�) obtained from Z0!`+`� and J= !`+`� events in CDF

data.

Muon type � (%) Electron type � (%)

Strict CMU and CMP 89.0�2.6 Strict CEM 82.5�1.5

Loose CMU and CMP 93.5�2.0 Loose CEM 85.0�1.4

Loose CMX 94.0�2.9 Loose PEM 89.0�1.5

Loose CMI 92.5�4.2
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FIGURES

FIG. 1. Neutralino (~�02) mass lower limits obtained in the trilepton analysis (solid line). The

SUSY parameters used for each plot were: a) tan� = 2, M(~q) = 1:2 � M(~g); b) tan� = 4,

M(~q) = 1:2�M(~g); c) tan� = 10, M(~q) = 1:2 �M(~g); d) tan� = 2, M(~q) = 2:0�M(~g). The

dashed line is the limit extracted from LEP measurements [17]. Note that � only extends down

to �600 GeV for tan� = 2.
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